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Abstract

In this paper we discuss the existence of a solution of a first order neutral differential equation with
piecewise constant argument. We extend the method of Chaplygin’s sequence to obtain two sided
bounds for the solution. These bounds are in the form of sequences of functions which are solutions
of associated linear neutral differential equations with piecewise constant argument. This construc-
tion of monotonic sequences of upper and lower functions approximate, with increasing accuracy,
the desired solution of the neutral differential equation with piecewise constant argument. Further
we show that these sequences converge uniformly and monotonically to the unique solution of the
equation.The error estimate obtained is better than the corresponding one for ordinary differential
equations.
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1. Introduction

The purpose of this paper is to prove the existence of a solution of the nonlinear neutral differential
equation

x′(t) = f(t, x(t), x([t]), x′([t])), (1)

with initial condition

x(0) = x0. (2)

Here, [.] denotes the greatest integer function and f satisfies the following conditions:

(1) f(t, x, y, z) ∈ C2[D,R], where D ⊆ R+ × R× R× R.

(2) All the second order partial derivatives of f are positive and second order mixed derivatives
are less than k , for some negligibly small k > 0.

(3) |f(t, x, y, z)| ≤M on D, for some constant M > 0.

Differential Equations with piecewise constant deviating arguments have been the interest of study
for quite some time [See Busenberg et al. (1993), Cooke et al. (1990), Jayasree et al. (1991, 1993),
Guyker (2015) and references therein]. These type of equations appear in models of biological
systems and are called hybrid systems due to their nature of exhibiting continuous and discrete
properties. Neutral differential equations with piecewise constant arguments are studied by Wang
et al. (2005), Kumari et al. ( 2016, 2017) and Muminov (2017).

Construction of a sequence of functions is an established method that approximate with increas-
ing accuracy a solution of a nonlinear differential equation. Chaplygin (1954) introduced this
method for nonlinear ordinary differential equation. The method was further developed by Lusin
(1953). Kamont (1980) used the Chaplygin’s method for first-order nonlinear partial differential
-functional equations. Such construction of sequences is a variant of the well-known method of suc-
cessive approximations. There are several methods for proving the convergence of such sequences.
The method of quasilinearisation (Bellman et al. (1965)) gives a monotone sequence of approxi-
mate solutions converging to the unique solution of the nonlinear differential equation, while its
further development (Lakshmikantham et al. (1998)) by relaxing the conditions on the nonlinear
function yield some improved results. Further Ladde et al. (1985) developed the Monotone iterative
technique for nonlinear differential equations. Chaplygin’s method exclusively involves construct-
ing sequences of functions {un(t)} and {vn(t)} that approximate the desired solution x(t) of a given
differential equation with following properties:

(P1) un ≤ un+1 ≤ x ≤ vn+1 ≤ vn.

(P2) For a suitable constant β such that

0 ≤ v0 − u0 ≤ β; |un − vn| ≤
2β

22n .
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This paper is organized as follows:

In Section 2, we give the Preliminaries. Section 3 deals with the main result of the paper. We
obtain some error estimates between the upper and the lower functions and between exact and
approximate solutions.

1. Preliminaries

We first define a solution of the equation (1).

Definition 1.1.

A solution of the equation (1) on [0,∞) is a function x(t) that satisfies the initial condition (2)
and is such that:

(1) x(t) is continuous on [0,∞).

(2) The derivative x′(t) exist at each point t ∈ [0,∞), with the possible exception of the points
[t] ∈ [0,∞), where one sided derivatives exist.

(3) Equation (1) is satisfied on each interval [n, n+ 1) ⊂ [0,∞) with integral end points.

Following definitions follow from those given in Ladde et al. (1985).

Definition 1.2.

Suppose u ∈ C([0, α],R), α ∈ R, u′+(t) exists for t ∈ [0, α], and (t, u(t), u([t]), u′([t])) ∈ D.

If u(t) satisfies the differential inequality

u′+(t) ≤ f(t, u(t), u([t]), u′([t])), t ∈ [0, α]; u(0) ≤ x0. (3)

it is said to be a lower-solution with respect to the initial value problem (1) and (2).

On the other hand, if

v′+(t) ≥ f(t, v(t), v([t]), v′([t])), t ∈ [0, α]; v(0) ≥ x0. (4)

v(t) is said to be an upper-solution.

Here,

v′+(t) = limh→0+sup h
−1[v(t+ h)− v(t)] = limh→0+inf h

−1[v(t+ h)− v(t)].

We need following Lemmas.
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Lemma 1.3 ( Ascoli-Arzela).

On a compact x-set B0 ⊂ Rn, let fn(x), n = 1, 2, 3, ... be uniformly bounded and equicontinuous
sequence of functions. Then, there exist a subsequence {fnk

(x)} uniformly convergent on B0.

Following result can be obtained by using the method of steps.

Lemma 1.4.

The unique solution of the non homogeneous linear neutral differential equation with piecewise
constant argument

x′(t) = ax(t) + bx([t]) + cx′([t]) + h(t), x(0) = x0, t ∈ J.

is given by ,

x(t) =

[
x0Π

[t]−1
i=0 {e

∫ i+1

i
a du +

∫ i+1

i

(
b+ ac

1− c

)
e
∫ i+1

s
a du ds}

][
e
∫ t

[t]
a du +

∫ t

[t]

(
b+ ac

1− c

)
e
∫ t

s
a du ds

]

+


[t]∑
j=1

[
Π

[t]−1
i=j {e

∫ i+1

i
a du +

∫ i+1

i

(
b+ ac

1− c

)
e
∫ i+1

s
a du ds}

]

×
[∫ j

j−1

h(j − 1)

1− c
e
∫ t

s
a du +

∫ j

j−1
h(s)e

∫ t

s
a du

]}

×

[
e
∫ t

[t]
a du +

∫ t

[t]

(
b+ ac

1− c

)
e
∫ t

s
a du ds

]

+

∫ t

[t]

h(j − 1)

1− c
e
∫ t

s
a du +

∫ j

j−1
h(s)e

∫ t

s
a du, t ∈ J, c 6= 1.

Next we have the following result.

Theorem 1.5.

Let D be an open (t, x, y, z)-set in R4 and f ∈ C(D,R). Assume that u, v are lower and upper
solutions of (1) with initial condition (2) such that

(1) u(0) ≤ v(0),

(2) (t, u(t), u([t]), u′([t])), (t, v(t), v([t]), v′([t]) ∈ D, t ∈ [0, α),
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(3) u(0) ≤ x(0) = x0 ≤ v(0),

(4) u′(t) ≤ f(t, u(t), u([t]), u′([t])), v′(t) ≥ f(t, v(t), v([t]), v′([t])),

(5) f(t, x, y, z) is non-decreasing in y, z for (t, x) ∈ [0, α)× R and satisfies the condition

f(t, x1, y1, z1)− f(t, x2, y2, z2) ≤ L1(x1 − x2) + L2(y1 − y2) + L3(z1 − z2),

x1 ≥ x2, y1 ≥ y2, z1 ≥ z2 and L1, L2, L3 are positive constant with

L3 ≤
3(L+ 1)

5L+ 3
,

where L = max{L1, L2}.

Then, u(t) ≤ x(t) ≤ v(t), ∀t ∈ [0, α).

Proof:

Let t ∈ [n, n + 1), n = 0, 1, 2, . . . and un(t), vn(t) denote lower and upper solution respectively on
the interval [n, n+ 1). Observe that by continuity, it is enough if we show

un(t) ≤ xn(t); xn(t) ≤ vn(t), for t ∈ [n, n+ 1).

First we show that:

un(n) ≤ xn(n), n = 0, 1, 2, . . .

implies

un(t) ≤ xn(t); t ∈ [n, n+ 1).

Since, un(t) is a lower solution, for t ∈ [n, n+ 1),

u′n(t) ≤ f(t, un(t), un(n), u′n(n)); un(n) = xn(n).

Let us assume that there exists tn ∈ [n, n+ 1) such that

un(tn) = xn(tn); un(t) < xn(t), t ∈ (n, tn).

For small h > 0 such that n+ h < tn, we have

un(n+ h) = un(n) + hu′n(n); xn(n+ h) = xn(n) + hx′n(n).

Hence,

xn(n+ h)− un(n+ h) ≥ 0,

i.e.,

xn(n) + hx′n(n)− un(n)− hu′n(n) ≥ 0,

i.e.,

xn(n)− un(n) + h(x′n(n)− u′n(n)) ≥ 0.
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Therefore, we have

x′n(n) ≥ u′n(n).

Consider

un(tn)− un(tn − h) > xn(tn)− xn(tn − h).

Dividing by h we get

un(tn)− un(tn − h)

h
≥ xn(tn)− xn(tn − h)

h
,

which gives

u′n(tn) ≥ x′n(tn).

This implies

f(t, un(tn), un(n), u′n(n)) ≥ f(t, xn(tn), xn(n), x′n(n)).

But,

un(n) ≤ xn(n); u′n(n) ≤ x′n(n),

and consequently above inequality contradicts the non-decreasing property of f. Hence,

un(t) ≤ xn(t), for t ∈ [n, n+ 1).

Next define

ρn(t) = xn(t) + εe
( 3(L+1)

L3
)t
, t ∈ [n, n+ 1),

where ε > 0 is sufficiently small.

Here,

L = max{L1, L2}; L3 ≤
3(L+ 1)

5L+ 3
.

Then,

ρn(t) > xn(t), t ∈ [n, n+ 1).

Hence, using condition (5) we get,

f(t, ρn(t), ρn(n), ρ′n(n))− f(t, xn(t), xn(n), x′n(n))

≤ L1(ρn(t)− xn(t)) + L2(ρn(n)− xn(n)) + L3(ρ
′
n(n)− x′n(n)),

≤ Lεe(
3(L+1)

L3
)t

+ Lεe
( 3(L+1)

L3
)n

+ 3ε(L+ 1)e
( 3(L+1)

L3
)n
,

≤ Lεe(
3(L+1)

L3
)t

+ Lεe
( 3(L+1)

L3
)n

[4 +
3

L
],
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which gives,

f(t, ρn(t), ρn(n), ρ′n(n)) ≤ Lεe(
3(L+1)

L3
)t

+ Lεe
( 3(L+1)

L3
)n

[4 +
3

L
]

+f(t, xn(t), xn(n), x′n(n)).

Also,

ρ′n(t) = x′n(t) +
3ε(L+ 1)

L3
e
( 3(L+1)

L3
)t

≥ f(t, xn(t), xn(n), x′n(n)) +
3ε(L+ 1)

L3
e
( 3(L+1)

L3
)t
,

≥ f(t, ρn(t), ρn(n), ρ′n(n))− Lεe(
3(L+1)

L3
)t − Lεe(

3(L+1)

L3
)n

[4 +
3

L
]

+
3ε(L+ 1)

L3
e
( 3(L+1)

L3
)t
,

≥ f(t, ρn(t), ρn(n), ρ′n(n))

+Lε

[(
−1 +

3(L+ 1)

LL3

)
e
( 3(L+1)

L3
)t −

(
4L+ 3

L

)
e
( 3(L+1)

L3
)n
]
,

≥ f(t, ρn(t), ρn(n), ρ′n(n)).

Since, for t ∈ [n, n+ 1),

u′n(t) ≤ f(t, un(t), un(n), u′n(n)); un(n) < ρn(n), u′n(n) < ρ′n(n),

we get

un(t) < ρn(t).

Letting ε→ 0, we arrive at

un(t) ≤ xn(t),∀ t ∈ [n, n+ 1).

Similarly, we can show that

xn(t) ≤ vn(t), ∀ t ∈ [n, n+ 1).

Hence, the proof. �

2. Main results

In this section, we prove our main result and obtain error estimates. Let α = min{a, ρ/M}, where
ρ = min{b, c, d}, and let

D = {0 ≤ t ≤ a, |x(t)− x0| ≤ b, |x([t])− x0| ≤ c, |x′([t])− x′0| ≤ d}.
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Theorem 2.1.

Consider monotonic functions u0 = u0(t) and v0 = v0(t) such that

(C1) u0, v0 are differentiable on t ∈ [0, α),

(C2) (t, u0(t), u0([t]), u
′
0([t])) ∈ D and (t, v0(t), v0([t]), v

′
0([t])) ∈ D,

(C3) u′0(t) ≤ f(t, u0(t), u0([t]), u
′
0([t])) ; u0(0) = x(0);u′0(0) = x′(0),

v′0(t) ≥ f(t, v0(t), v0([t]), v
′
0([t])) ; v0(0) = x(0); v′0(0) = x′(0).

(C4) f(t, x, y, , z) is non-decreasing in y, z for (t, x) ∈ [0, α)× R and satisfies the condition

f(t, x1, y1, z1)− f(t, x2, y2, z2) ≤ L1(x1 − x2) + L2(y1 − y2) + L3(z1 − z2),

x1 ≥ x2, y1 ≥ y2, z1 ≥ z2 and L1, L2, L3 are positive constant with

L3 ≤
3(L+ 1)

5L+ 3
,

where L = max{L1, L2}.

Then, equation (1) has unique solution x(t) which is bounded by sequences {un(t)}, {vn(t)} such
that

un(t) ≤ un+1(t) ≤ x(t) ≤ vn+1(t) ≤ vn(t); t ∈ (0, α]

and

un(0) = x(0) = vn(0); u′n(0) = x′(0) = v′n(0).

Further, as n→∞, both un(t), vn(t) tend uniformly to x(t) on [0, α].

Proof:

Let

α̃ =

{
[α] + 1 α 6= [α];

α α = [α].

From conditions (C1), (C2), and (C3), u0(t) is a lower solution and v0(t) is an upper solution.

For t ∈ [m,m+ 1), where m = 0, 1, 2, . . . , α̃− 2, and for t ∈ [α̃− 1, α), we have

u0(t) ≤ x(t) ≤ v0(t); u0(m) = x(m) = v0(m); u′0(m) = v′0(m) = x′(m).

On each interval [m,m+ 1), where m = 0, 1, 2, . . . , α̃− 2 and on [α̃− 1, α), we define the following
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functions:

f1(t, x(t), x([t]), x′([t]);u0, v0) = f(t, u0(t), u0([t]), u
′
0([t]))

+
1

3
fx(t, u0(t), u0([t]), u

′
0([t])(x(t)− u0(t))

+
1

3
fy(t, u0(t), u0([t]), u

′
0([t])(x([t])− u0([t]))

+
1

3
fz(t, u0(t), u0([t]), u

′
0([t]))(x

′([t])− u′0([t])), (5)

f2(t, x(t), x([t]), x′([t]);u0, v0) = f(t, u0(t), u0([t]), u
′
0([t]))

+
1

3
{f(t, u0(t), u0([t]), u

′
0([t]))− f(t, v0(t), v0([t]), v

′
0([t]))}{

x(t)− u0(t)
u0(t)− v0(t)

+
x([t])− u0([t])
u0[(t])− v0([t])

+
x′([t])− u′0([t])
u′0([t])− v′0([t])

}
. (6)

Since, fxx, fyy, fzz > 0, fx, fy, fz are strictly increasing functions, using (5), we get,

f(t, a1, b1, c1) ≥ f(t, a0, b0, c0) +
1

3
fx(t, a0, b0, c0)(a1(t)− a0(t))

+
1

3
fy(t, a0, b0, c0)(b1(t)− b0(t)) +

1

3
fz(t, a0, b0, c0)(c1(t)− c0(t)),

(7)

where a1 ≥ a0, b1 ≥ b0, c1 ≥ c0.

Observe that for t = m where m = 0, 1, 2, . . . , α̃− 1,

f1(t, x(t), x([t]), x′([t]);u0, v0) = f2(t, x(t), x([t]), x′([t]);u0, v0). (8)

Let u1(t)and v1(t) be solutions of linear neutral differential equations

u′1(t) = f1(t, u1(t), u1([t]), u
′
1([t]);u0, v0); u1(m) = u0(m), u′1(m) = u′0(m), (9)

and

v′1(t) = f2(t, v1(t), v1([t]), v
′
1([t]);u0, v0); v1(m) = v0(m), v′1(m) = v′0(m), (10)

respectively, on each interval [m,m+ 1), where m = 0, 1, 2, . . . , α̃− 2. From the condition (C3) and
definition of f1 we get

u′0(t) ≤ f(t, u0(t), u0([t]), u
′
0([t])),

= f1(t, u0(t), u0([t]), u
′
0([t]);u0, v0),
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which because of Theorem 1.5 implies

u0(t) ≤ u1(t); t ∈ (m,m+ 1). (11)

A similar reasoning shows that

v1(t) ≤ v0(t); t ∈ (m,m+ 1). (12)

Also,

u′0(t) ≤ f2(t, u0(t), u0([t]), u′0([t]);u0, v0), v′1(t) = f2(t, v1(t), v1([t]), v
′
1([t]);u0, v0).

Therefore,

u0(t) ≤ v1(t); t ∈ [m,m+ 1).

Next to show that

u′1(t) ≤ f(t, u1(t), u1([t]), u
′
1([t])),

we observe that

u0 ≤ u1, u0([t]) ≤ u1([t]), u′0([t]) ≤ u′1([t])

which with (7) yields,

f(t, u1(t), u1([t]), u
′
1([t])) ≥ f(t, u0(t), u0([t]), u

′
0([t]))

+
1

3
fx(t, u0(t), u0([t]), u

′
0([t]))(u1(t)− u0(t))

+
1

3
fy(t, u0(t), u0([t]), u

′
0([t]))(u1([t])− u0([t]))

+
1

3
fz(t, u0(t), u0([t]), u

′
0([t]))(u

′
1([t])− u′0([t])).

This implies

f(t, u1(t), u1([t]), u
′
1([t])) ≥ f1(t, u1(t), u1([t]), u′1([t]);u0, v0)

≥ u′1(t).

Also, for t ∈ [α̃− 1, α], we have

f(t, u1(t), u1([t]), u
′
1([t])) ≥ u′1(t).

Thus, u′1(t) satisfies conditions (C1), (C2) and (C3) so that u1(t) is a lower function.

Hence,

u1(t) ≤ x(t).

Next,

v′1(t) = f2(t, v1(t), v1([t]), v
′
1([t]);u0, v0) ≥ f(t, v1(t), v1([t]), v

′
1([t])),
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as

u0(t) ≤ v1(t).

and f(t, u1(t), u1([t]), u
′
1([t])) is a convex function. This shows that v1(t) is an upper function.

Hence,

x(t) ≤ v1(t).

Thus, we have

u0(t) ≤ u1(t) ≤ x(t) ≤ v1(t) ≤ v0(t); t ∈ (m,m+ 1), (13)

where m = 0, 1, 2, . . . , α̃− 1.

From above discussion it is clear that we can define a transformation T that assigns to a given
couple of functions (u0(t), v0(t)) a new couple (u1(t), v1(t)) satisfying all the three conditions. This
implies that

(u1(t), v1(t)) = T (u0(t), v0(t)).

Again applying T to (u1(t), v1(t)) we get (u2(t), v2(t)).

A repeated applications of the transformation T provides a well-defined sequence called Chap-
lygin sequence,

(un+1, vn+1) = T (un, vn),

of functions satisfying the following relations for t ∈ [m,m+ 1),

where m = 0, 1, 2, . . . , α̃− 2 and on [α̃− 1, α].

R1 u′n(t) ≤ f(t, un(t), un([t]), u′n([t]));

un([t]) = un−1([t]); un([t]) ≥ un(t); un([t]) = u′n([t]) = x([t]),

R2 v′n(t) ≥ f(t, vn(t), vn([t]), v′n([t]));

vn([t]) = vn−1([t]); vn([t]) ≤ vn(t); vn([t]) = v′n([t]) = x([t]),

R3 un(t) ≤ un+1(t) ≤ x(t) ≤ vn+1(t) ≤ vn(t);

R4 u′n+1(t) = f1(t, un+1(t), un+1([t]), u
′
n+1([t]);un(t), vn(t));

R5 v′n+1(t) = f2(t, vn+1(t), vn+1([t]), v
′
n+1([t]);un(t), vn(t)).

From R3 it follows that sequences {un} and {vn} are monotonic and uniformly bounded on
[m,m+ 1) where m = 0, 1, 2, . . . , α̃− 2 and on [α̃− 1, α].
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Furthermore, they are equicontinuous, in view of the fact that, for each fixed n, un, vn are
solutions of linear neutral differential equations.

Hence, by Lemma 1.3, un(t), vn(t) are uniformly convergent and tends to x(t) as n → ∞. This
completes the proof. �

We now have the following estimate.

Corollary 2.2.

For a suitable constant β,

0 ≤ v0(t)− u0(t) ≤ β,

we have

|vn(t)− un(t)| ≤ (
1

3
)n

2β

22n ; t ∈ [0, α]. (14)

Proof:

Let

J = {(t, x), u0(t) ≤ x ≤ v0(t);m ≤ t < m+ 1, } ∪ {(t, x), u0(t) ≤ x ≤ v0(t); t ∈ [α̃− 1, α]},

where m = 0, 1, 2, . . . , α̃− 2. Let,

K = SupJ |fx(t, x, y, z), fy(t, x, y, z), fz(t, x, y, z)|,

and

H = SupJ |fxx(t, x, y, z), fyy(t, x, y, z), fzz(t, x, y, z)|.

Assume that

0 ≤ v0(t)− u0(t) ≤ (2HαeKα)−1 = β.

Clearly (14) holds for n = 0. Suppose it is true for a certain fixed n, i.e.

|vn(t)− un(t) ≤ (
1

3
)n

2β

22n .
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From the definition of un+1(t), vn+1(t) and the mean value theorem it follows that

|v′n+1(t)− u′n+1(t)| = |f2(t, vn+1(t), vn+1([t]), v
′
n+1([t]);un, vn)

−f1(t, un+1(t), un+1([t]), u
′
n+1([t]);un, vn)|

= |f(t, un(t), un([t]), u′n([t]))

+
1

3
{f(t, un(t), un([t]), u′n([t]))− f(t, vn(t), vn([t]), v′n([t]))}

×
[
vn+1(t)− un(t)

un(t)− vn(t)
+
vn+1([t])− un([t])

un([t])− vn([t])

]

+
1

3
{f(t, un(t), un([t]), u′n([t]))− f(t, vn(t), vn([t]), v′n([t]))}

×
[
v′n+1([t])− u′n([t])

u′n([t])− v′n([t])

]

−f((t, un(t), un([t]), u′n([t]))

−1

3
fx(t, un(t), un([t]), u′n([t]))(un+1(t)− un(t))

−1

3
fy(t, un(t), un([t]), u′n([t]))(un+1([t])− un([t]))

−1

3
fz(t, un(t), un([t]), u′n([t]))(u′n+1([t])− u′n([t]))|.

On simplification this yields,

|v′n+1(t)− u′n+1(t)| ≤
1

3
|fx(t, kn(t), kn([t]), k′n([t]))(vn+1(t)− un+1(t))

+fy(t, kn(t), kn([t]), k′n([t]))(vn+1([t])− un+1([t]))

+fz(t, (kn(t), kn([t]), k′n([t]))(v′n+1([t])− u′n+1([t]))

−fx(t, un(t), un([t]), u′n([t]))(un+1 − un)

−fy(t, un(t), un([t]), u′n([t]))(un+1([t])− un([t]))

−fz(t, un(t), un([t]), u′n([t]))(un+1([t])− un([t]))|,
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where

un(t) ≤ kn(t) ≤ vn(t), un([t]) ≤ kn([t]) ≤ vn([t]), u′n([t]) ≤ k′n([t]) ≤ v′n([t]).

Using definition of K, we get

|v′n+1(t)− u′n+1(t)| ≤
1

3
|fx(t, kn(t), kn([t]), k′n([t]))(vn+1(t)− un+1(t))

+fy(t, kn(t), kn([t]), k′n([t]))(vn+1([t])− un+1([t]))

+fz(t, kn(t), kn([t]), k′n([t]))(v′n+1([t])− u′n+1([t]))

+(un+1(t)− un(t))

×[fx(t, kn(t), kn([t]), k′n([t]))− fx(t, un(t), un([t]), u′n([t]))]

+(un+1([t])− un([t]))

×[fy(t, kn(t), kn([t]), k′n([t]))− fy(t, (un(t), un([t]), u′n([t]))]

+(u′n+1([t])− u′([t])n)

×[fz(t, kn(t), kn([t]), k′n([t]))− fz(t, (un(t), un([t]), u′n([t]))]|,

which on further simplication give

|v′n+1(t)− u′n+1(t)| ≤
1

3
K [|vn+1(t)− un+1(t)|]

+
1

3
K
[
|vn+1([t])− un+1([t])|+ |v′n+1([t])− u′n+1([t])|

]
+

1

3
|fxx(t, ln(t), ln([t]), l′n([t]))(kn(t)− un(t))(un+1(t)− un(t))

+fyy(t, ln(t), ln([t]), l′n([t]))(kn([t])− un([t]))(un+1([t])− un([t]))

+fzz(t, ln(t), ln([t]), l′n([t]))(k′n([t])− u′n([t]))(u′n+1([t])− un([t]))|,

where

un(t) ≤ ln(t) ≤ kn(t), un([t]) ≤ ln([t]) ≤ kn([t]), u′n([t]) ≤ l′n([t]) ≤ k′n([t]).
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Using definition of H, we get

|v′n+1(t)− u′n+1(t)| ≤
1

3
K [|vn+1(t)− un+1(t)|+ |vn+1([t])− un+1([t])|]

+
1

3
K
[
|v′n+1([t])− u′n+1([t])|

]
+

1

3
H [|(un+1(t)− un(t))(kn(t)− un(t))|]

+
1

3
H [|(un+1([t])− un([t]))(kn([t])− un([t]))|]

+
1

3
H
[
|(u′n+1([t])− u′n([t]))(k′n([t])− u′n([t])|

]
≤ 1

3
K [|vn+1(t)− un+1(t)|+ |vn+1([t])− un+1([t])|]

+
1

3
K
[
|v′n+1([t])− u′n+1([t])|

]
+

1

3
H
[
|vn(t)− un(t)|2 + |vn([t])− un([t])|2

]
.

+
1

3
H
[
|v′n([t])− u′n([t])|2

]
≤ K

3
|vn+1(t)− un+1(t)|+

H

3
|vn(t)− un(t)|2.

This yields,

|vn+1(t)− un+1(t)| ≤
H

3

[
(
1

3
)n

2β

22n

]2 ∫ t

m
e

K

3
(t−s) ds,

≤ H

3

[
(
1

3
)n

2β

22n

]2
αeKα,

≤
[
(
1

3
)n+1 2β

22n+1

]
, n > 0.

Thus, by induction, the relation (14) is true ∀ n, and consequently we have,

|vn(t)− un(t)| ≤ (
1

3
)n

2β

22n .

This completes the proof. �

Remark.

From (14) following is immediate:
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(i) The error estimates between exact and approximate solutions are given by

|x(t)− un(t)| ≤ (
1

3
)n

2β

22n , |vn(t)− x(t)| ≤ (
1

3
)n

2β

22n ,

where x(t) is the solution of the equation (1).

(ii) The estimate given by (14) is much sharper than the (P2) in the original Chaplygin’s method.

3. Conclusion

In this paper, we have extended Chaplygin’s method for proving existence of the solution of the
first order nonlinear neutral differential equation with piecewise constant argument. We have ob-
tained error estimates that are better than the ones for first order nonlinear ordinary differential
equation.
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